内容简介:
信息抽取的目的是从海量互联网文本信息中抽取结构化知识,是知识图谱自动化构建、更新的基础,为信息检索、推荐系统、智能问答等诸多研究领域提供底层知识推理支撑并取得了重大突破,是推动人工智能技术由感知走向认知的关键要素,具有重要的研究意义和实用价值。
本书梳理了命名实体识别、关系抽取、事件抽取等相关研究方向的知识资源、基础理论和实践应用,详细介绍了实体关系联合抽取、弱监督关系抽取、基于迁移学习的关系抽取、多实例联合事件抽取、基于因变量的事件模板推导等前沿理论研究,并以领域知识图谱、事理图谱等为例,详细介绍了信息抽取在图谱构建中的应用。最后本书对信息抽取进行了总结和未来研究方向展望。