内容简介:
本书共11章,主要内容包括深度学习简介、Python基础、神经网络基础、卷积神经网络、经典卷积网络结构、迁移学习、循环神经网络、强化学习、深度强化学习、基于策略的算法更新与趋势等,通过具体案例,将Python语言、深度学习思想、强化学习思想和实际工程完美地结合起来。本书由浅入深,从易到难,各章节既相对独立又前后关联,其最大的特点就是打破了传统书籍的讲解方法,在介绍各部分理论基础的同时,搭配具体实例,通过对相关程序的详细讲解进一步加深对理论基础的理解。
本书共11章,主要内容包括深度学习简介、Python基础、神经网络基础、卷积神经网络、经典卷积网络结构、迁移学习、循环神经网络、强化学习、深度强化学习、基于策略的算法更新与趋势等,通过具体案例,将Python语言、深度学习思想、强化学习思想和实际工程完美地结合起来。本书由浅入深,从易到难,各章节既相对独立又前后关联,其最大的特点就是打破了传统书籍的讲解方法,在介绍各部分理论基础的同时,搭配具体实例,通过对相关程序的详细讲解进一步加深对理论基础的理解。
网站地图
网站地图